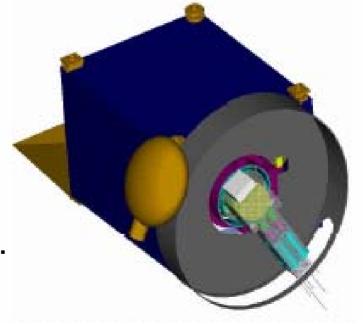


NPOESS Aerosol Polarimetry Sensor (APS): Overview & Status


2003 International Geoscience And Remote Sensing Symposium Toulouse, France July 21-25, 2003

Dr. Vincent Grano, IPO

Dr. Shiva Ubhayakar, NGST

Mr. John M. Haas, Aerospace Corp.

Dr. Carl Schueler, SBRS

Agenda

- APS Requirements
- Acquisition and Design Approach
- Sensor & Environmental Data Record (EDR)
 Overview
- Status
- Role of Science Community

The APS Sensor

- Retrieves specified aerosol and cloud parameters
- Sensor for satisfying Four Environmental Data Records (EDRs)
- Uses multi-angular multispectral photopolarimetry
- Provides accurate and stable climate EDRs
- Prime contractor: Northrop Grumman Space Technology, Redondo Beach, California
- Prime Subcontractor: Raytheon Santa Barbara Remote Sensing (SBRS), Goleta, California

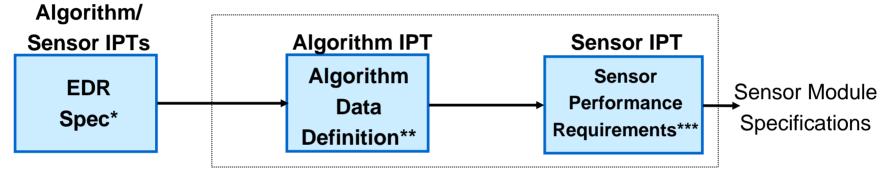
APS Mission Requirements

- Provide data to satisfy need to determine aerosol climate forcing
- Provide data to measure global aerosol variability
- Provide data to fill operational products

"The primary mission of the APS is to provide high quality radiometric data as a function of polarization in the visible through short-wave infrared (SWIR) spectral regions in support of climate studies. In addition, the APS shall support worldwide DoD and civilian operations by augmenting and enhancing applicable Visible & Infrared Imaging Radiometer Suite (VIIRS) EDRs"

APS EDRs

- Aerosol Optical Thickness
 - Increased accuracy over land and over water
- Aerosol Particle Size
 - Effective radius and effective variance for each mode (fine and coarse)
 - Increased accuracy over land and water
- Aerosol Refractive Index, Aerosol Single-scattering Albedo and Aerosol Shape (Sphericity)
- Cloud Particle Size, Variance and Distribution
 - Effective radius and effective variance



NPOESS Design Approach for APS

- The APS EDRs are the ultimate deliverables to the user community
 - For each EDR, a set of attributes was developed by the user community; some attributes may have a minimum performance level (Threshold) and a goal performance level (Objective)
- Design optimized to
 - Meet EDRs with better than threshold performance
 - Accommodate the Government's priorities
 - Meet costs and schedule with minimum risk
- Performance specifications (systems, sensor, algorithm, and interfaces) developed with guaranteed levels of performance for final acceptance and validation

EDR Attributes Flowed Down to Sensor Performance Requirements

- Horizontal Cell Size
- Horizontal / Vertical Coverage
- Measurement Range
- Measurement Accuracy & Precision
- Long-term Stability
- Mapping Uncertainty

- Auxiliary/Ancillary Data
- Bands CW/BW
- Dynamic Range/Sensitivity
- Radiometric Accuracy/Stability
- Horizontal Sampling Interval (HSI)
- Spatial resolution (GIFOV)
- Polarization Accuracy & Precision

- Scan definition
- Calibration Definition
- IFOV/Response Uniformity
- Crosstalk
- Stray Light Rejection
- LOS Pointing/Jitter Requirements
- CW/BW Tolerance
- Band co-registration
- Spectral Uniformity

^{**} Algorithm Data Definition (ADD)

Documents (Y0012603—Y0012607)

^{***} Sensor Requirements Allocation Document (RAD)

^{*}APS System Specification

Major Design Drivers

- The APS shall meet specified EDR performance
- Provide high quality radiometric data as a function of polarization in the visible through short-wave infrared (SWIR) spectral regions in support of climate studies
- Horizontal Cell Size (nadir); Threshold: 10 km;
 Objective 1 km
- Long-term Stability; e.g., AOT Threshold 0.01;
 Objective 0.005
- Measurement Range; e.g., AOT Threshold 0-5;
 Objective 0-10

APS Integrated Requirements Priority List

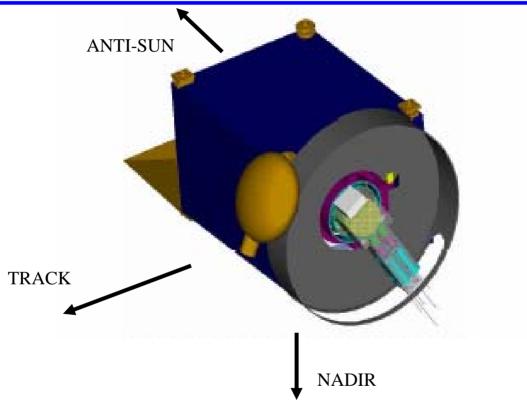
- Aerosol EDRs Quality
- 2. Cloud EDRs (Cloud Particle Size Distribution) Quality
- 3. Cost
- 4. VIIRS* Synergy
- 5. Schedule
- 6. Data Rate
- 7. Volume
- 8. Power
- 9. Mass
- 10. Pre-planned Product Improvements

^{*} Visible and Infra-red Imager Radiometer Suite

APS Measurements

- Nine spectral bands 400 to 2400 nm
 - 412, 488, 555, 672, 865, 910/940*, 1378, 1610, and 2250 nm
 - Most are the same as VIIRS for synergy
- One band will be replaced to measure water vapor
- Nadir looking
 - 10 km swath
- Multi-angular along-track
 - $-\pm$ 60 degrees about nadir in the along-track direction
- Mid-morning orbit
 - 2130 LTAN orbit or 0930 LTDN
- Polarization
 - 0, 45, 90, and 135 degrees

^{* 910} or 940, based on sensor risk assessment



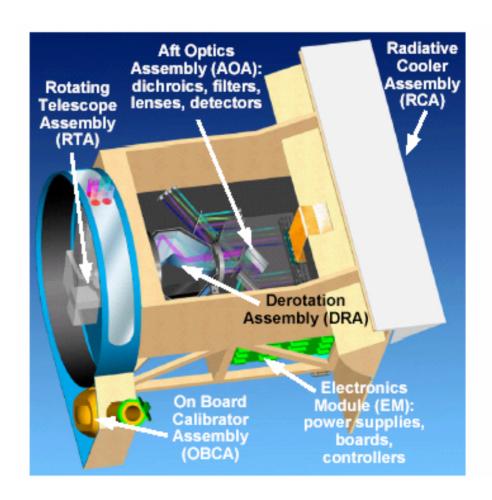
APS Radiometric Performance

Requirement	Performance
Radiometric Sensitivity: 540 @ L Typical	800 @ L Typical
Polarimetric Accuracy: 0.2%	< 0.15% Typical
Calibration: Radiometric: 5% accuracy	3% with VIIRS
Polarimetric Precision: < 0.13%	<0.087% Typical
Scan: Up to +/ - 60 deg about nadir along track	Up to +/ -60 deg 60 deg about nadir along track

PRE-PDR APS Sensor Design

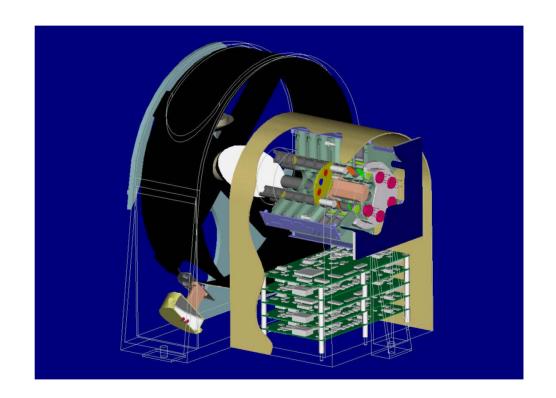
MASS: 33.5 kg.

DATA RATE: 88 kbp/s average, 210 kbp/s peak


POWER: 37.5 W Peak

SIZE: 66 (Track) x 52 (Anti-Sun) x 41 (nadir) cm

APS Rotating Telescope Assembly Subsystems


- Eliminates Reflecting Surfaces Before Polarization Analyzers
- Conjugate Telescopes for Orthogonal Polarization Components
- Heritage Electro-Mechanical Interfaces and Implementation of

APS Scanning Mirror Assembly Subsystems

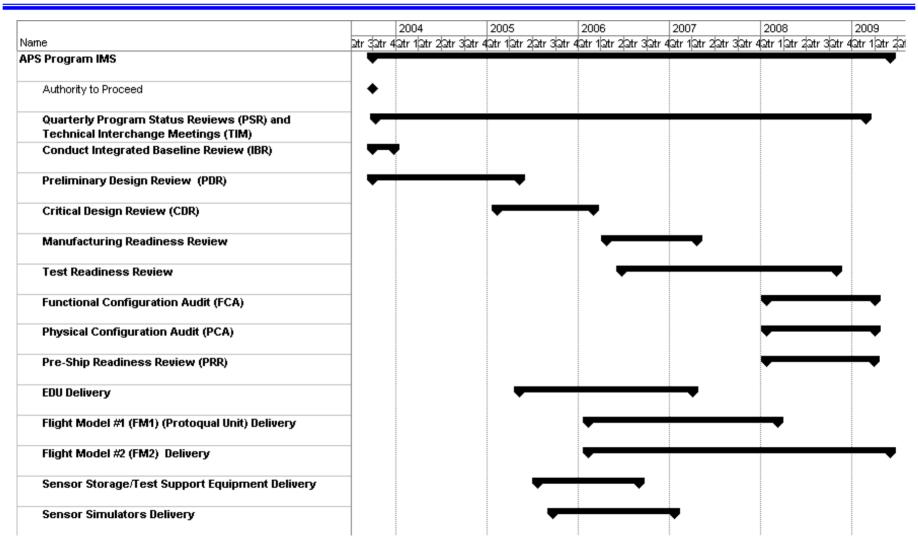
- EOSP Heritage Crossed Scan Mirrors
- Conjugate Telescopes for Orthogonal Polarization Components
- Simple Heritage Design

SELECTED EDR ACCURACY and STABILITY REQUIREMENTS

EDR ACCURACY	Threshold	Objective	Spec.
AOT (Ocean)	0.02 or 7%	0.01 or 5%	0.01 or 5%
AOT (Land)	0.04 or 10%	0.03 or 7%	0.03 or 7%
Aerosol Effective Radius	0.1 or 10%	0.05 or 5%	0.05 or 5%
Aerosol Effective Variance	0.3 or 50%	0.2 or 30%	0.2 or 30%
Refractive Index	0.02	0.01	0.015
Single Scatter Albedo	0.03	0.01	0.02
Cloud Effective Radius	1.0 or 10%	0.5 or 5%	0.75 or 7. 5%
Cloud Effective Variance	0.05 or 50%	0.04 or 40%	0.05 or 50%

	Threshold	Objective	Spec.
EDR STABILITY		Ů	•
AOT (Ocean)	0.01	0.005	0.005 05 2.5%
AOT (Land)	0.01	0.005	0.005 or 2.5%
Aerosol Effective Radius	0.05 or 10%	0.05 or 5%	0.05 or 5%
Aerosol Effective Var.	0.2 or 40%	0.1 or 20%	0.1 or 20%
Refractive Index	0.01	0.005	0.0075
Single Scatter Albedo	0.02	0.01	0.01
Cloud Effective Radius	0.5 or 5%	0.3 or 3%	0.4 or 4%
Cloud Effective Variance	0.04 or 40%	0.03 or 30%	0.04 or 40%

Approved for Public Release 4/15/2003 by SAF/PAS


SELECTED EDR PRECISION REQUIREMENTS

EDR PRECISION	Threshold	Objective	Spec.
AOT (Ocean)	0.01	0.005	0.01 or 2%
AOT (Land)	0.03	0.02	0.02 or 2.5%
Aerosol Effective Radius	0.05 or 10%	0.05 or 5%	0.05 or 10% *
Aerosol Effective Variance	0.1 or 40%	0.1 or 20%	0.1 or 40% *
Refractive Index	0.01	0.005	0.01 **
Albedo	0.02	0.01	0.02 ***
Cloud Effective Radius	0.5 or 5%	0.3 or 3%	0.4 or 4%
Cloud Effective Variance	0.04 or 40%	0.03 or 30%	0.04 or 40%

^{*} AOT < 0.8, ** AOT < 1.3, *** AOT < 1.5

APS Schedule

Science Interactivity Approach

- Users and scientists involved throughout program
 - Definition of original requirements
 - Continuing role of APS Operational Algorithm Team
 - Will participate in Calibration/Validation
- Participants in sensor/system procurement process
 - Attend and provide technical assessment of contractor performance
- Input and peer review for algorithm upgrades
- APS Algorithm Theoretical Basis Documents will be available by April 04

Some Final Thoughts

- Making the transition from research to operations
- Science-quality data at operational refresh rates
- Science and research applications largely unexplored
- Capabilities in combination with VIIRS